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Foreword

Shimon Ullman

Research monographs age quickly. With the rapid accumulation of
scientific knowledge, it is unusual for a thirty-year-old summary
of a research program to remain fresh and engaging. David Marr’s
Vision is unique: reading it today is still a rewarding and stimulating
experience for a broad range of researchers in the brain and cognitive
sciences.

The book describes a general framework proposed by Marr for study-
ing and understanding visual perception. In this framework, the
process of vision proceeds by constructing a set of representations,
starting from a description of the input image, and culminating
with a description of three-dimensional objects in the surrounding
environment. Why these particular representations and how they
are computed and used—these are the main technical aspects of the
book. But these specific problems also led Marr to consider broader
problems: how can the brain and its functions be studied and under-
stood. It is the treatment of these broader problems that makes the
book unique. One does not have to agree with all of Marr’s views
of thirty years ago to enjoy the book and appreciate his creativity,
intellectual power, and ability to integrate insights and data from
the fields of neuroscience, psychology, and computation.

Xvii
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Foreword

I knew David closely, first as a student and then as a colleague. I
had many long discussions with him during his years at MIT, and I
miss him greatly both as a friend and as a colleague. In these intro-
ductory remarks, I reflect briefly on the development of some of his
ideas during these years, how they looked then, and how they look
today.

Looking back, it is striking to observe the amazing rate at which
the basic framework of the theory evolved soon after Marr’s arrival
at MIT. In the Artificial Intelligence laboratory at MIT, ongoing re-
search was often described in internal publications called “Al mem-
os.” During his years at MIT, Marr produced a flurry of these memos
reflecting the rate and intensity of his research. In 1974, his first year
at MIT, a series of three Al memos described in detail the theory of
early vision, with an initial implementation of the so-called primal
sketch. As was characteristic of much of his work, the first in the se-
ries was a careful consideration of the overall goal of low-level vision:
an autonomous process, which produces a symbolic representation,
useful for higher-level processes. Subsequent memos then described
the details of the process, for example, finding peaks and derivatives
in intensity profiles and making assertions about edges and bars,
their location, width, and blur.

An important insight gained from the work on the primal sketch
was the realization of the inherent complexity of early visual com-
putations, including edge detection. A number of edge-detection
techniques, such as the so-called Sobel operator, were widely used
at the time. They were fast and simple to use, but performed poorly
when applied to natural images. Marr, together will Ellen Hildreth,
devised a principled and systematic approach to edge detection, later
used in the popular Canny edge detector.

The primal sketch and edge-detection models also had implica-
tions for the study of cortical circuitry. Following the seminal work
of Hubel and Wiesel on the physiology of the primary visual cor-
tex, cells in this cortical region were often described as “edge detec-
tors.” The computational work on edge detection made it clear that
simple cells in the primary visual cortex could not, by themselves,
be edge detectors. They could play a useful role in the process, but
more elaborate circuitry, involving multiple units, will be required
for reliable edge detection. The general implication was that com-
putational studies of specific visual tasks, such as edge detection and
binocular vision, can play a useful, sometimes crucial, role in the
understanding of neural circuitry.
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The work on the primal sketch and subsequently on binocular
stereo matching fostered the belief that, due to the enormous com-
plexity inherent in low-level vision, understanding the circuitry and
response properties in the visual system would be difficult to at-
tain and remain incomplete without complementary studies at the
computational and algorithmic levels. At the same time, to be of
relevance to neurophysiology, computational studies of vision would
have to address in detail specific visual problems, rather than pursue
general mathematical formulations. This conclusion is manifested
in Marr’s sharp criticism of a book titled Physics and Mathematics of
the Nervous System. A review published in Science in 1975 opens with
Marr’s characteristic unabated style: “Many experimental biologists
dismiss with contempt the approach of even very able theoreticians
to developmental of neurophysiological problems. The outsider
needs look no further than this volume to understand why. Some
of the papers describe attempts to elucidate problems of biological
information processing, but in one way or another they all make the
same error of strategy—engaging in the search of a general theory
before and actually instead of tackling any of the particular problems
at hand.”

How is the primal sketch viewed today in neurophysiology and
in computational vision? Marr viewed the primal sketch as a rich
symbolic description of intensity changes in the image, composed of
two main stages: the extraction and classification of local intensity
changes, followed by the grouping of the local changes into more
extended entities. Plausible anatomical candidates for these compu-
tations are cortical areas V1 and V2, with V2 playing perhaps a more
important role in the grouping stages. There has been some evidence
relating V2 to grouping process, based in particular on the responses
of V2 units to subjective contours, and their sensitivity to border
ownership and figure-ground relationships. Area V1 is still often
considered in neurophysiology to be a bank of oriented or Gabor-
like filters applied to the image. Many in the field, however, suspect
that V1 may provide a substantially richer description of the image,
along the line proposed by Marr. Evidence from single units and
from brain imaging suggests that V1 may not be as autonomous in
its function as suggested by Marr: top-down signals from higher-
level visual areas appear to have significant effects on the computa-
tions performed by V1. The complexity of early visual processes is
now broadly appreciated from both computational and biological
standpoints. Because of this complexity, it is perhaps not surprising
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that the full understanding of the computations performed at the
level of V1 and V2 is almost as elusive as it was thirty years ago.

Shortly after beginning work on edge detection and the primal
sketch, Marr started to consider the problem of computing depth
from binocular vision. In another 1974 AI memo, he considered the
use of the primal sketch representation for the purpose of computing
binocular disparity between the two eyes. This is a problem that, in
collaboration with Tommy Poggio and Eric Grimson, occupied Marr
for several years.

The work on binocular vision played a formative role in develop-
ing the notion of a computational theory in the study of vision. In
binocular vision, the images of the left and right eyes are combined
to obtain depth information. The combination requires the iden-
tification of corresponding elements in the left and right images.
This “correspondence problem” was known to be highly ambigu-
ous, and, to disambiguate the matching, Marr and Poggio proposed
using explicit constraints imposed on the solution by the opacity
and continuity of objects in the world. These constraints were then
translated into a matching algorithm, which maximized unique-
ness, continuity, and the number of established matches. It was clear
that the use of uniqueness and continuity in binocular matching can
be obtained by different algorithms and can be implemented in dif-
ferent circuits. The general constraints are therefore independent of
a specific implementation and belong to the level termed “compu-
tational theory.”

The concept of different levels in the study of vision and the
brain in general was given an explicit formulation in a 1976 Al
memo by Marr and Poggio titled “From Understanding Computa-
tion to Understanding Neural Circuitry.” This notion concerning
levels of explanations is a central theme in Marr’s book. It has had
a far-reaching influence in both neuroscience and cognitive science
over the years since the publication of the book. This influence is
clearly reflected in one of the earliest reviews of Vision by Christo-
pher Longuet-Higgins, in Science (1982): “When David Marr died
last year at the age of 35, he had already become a legend among
neuroscientists. His posthumous book Vision is a synopsis of the
work that made his reputation—his computational theories of the
human visual system.”

The final stage in Marr’s theory of visual representations was a
particular form of a three-dimensional (3-D) model of objects in the
visible environment, developed with Keith Nishihara. The main
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motivation behind this model was the creation of invariant object
representation for the purpose of recognition, which will be inde-
pendent of the particular viewing direction and irrelevant details in
the object’s shape.

The central role of such invariant 3-D models for recognition has
been challenged by subsequent psychophysical and computational
studies. Computational vision has been dominated in the last decade
by an alternative approach to recognition, based on describing the
possible image appearances of an object rather than its invariant 3-D
structure. It is interesting to note that although the book focuses on
3-D models, Marr also discussed the useful role of appearance-based
descriptions for recognition. For example, in a working paper dat-
ing back to 1973, written with C. Hewitt and titled “Video Ergo
Scio,” they make the following comment: “Our insistence on using
3-D models for the basic representation of objects does not preclude
the use of catalogues of appearances of objects from different view
points. Indeed, we regard knowledge about appearances as an indis-
pensable kind of clue.”

My view is that both types of representations are required com-
putationally, and both are likely to exist within the human visual
system. The sometimes heated debate in human psychophysics re-
garding view-based versus 3-D view-independent representations
often assumed a single representation scheme, but psychophysical,
brain imaging, and developmental studies suggest that both types
of representations are in fact used in human vision. Computation-
ally, methods for object recognition and classification have focused in
recent years almost exclusively on appearance-based representations,
with impressive results. However, for dealing with a broader range
of problems, including action recognition, the integration of appear-
ance and 3-D models will be required. Future theories are likely
therefore to be broader in scope and to integrate appearance-based
representations together with 3-D models of the type put forward
by Marr.

Thirty years after the formulation of Marr’s theories, the main
problems that occupied him remain fundamental open problems in
the study of perception. Given the burst of new ideas and the quick
evolution of Marr’s theories during his MIT years, one cannot but
wonder how much more progress in the field might have been made
if he had been able to pursue his work.

The emergence of new imaging techniques and the availability
of powerful computational resources are constantly accelerating the
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rate of acquiring knowledge and developing new computational
models. However, putting it all together to understand vision and
the brain will require new theories and concepts to integrate in-
sights from the brain, cognitive, and computation sciences. David
Mart’s Vision provides an inspiration for such an effort, which is as
relevant today as it was three decades ago.

Rehovot, September 2009



Preface

This book is meant to be enjoyed. It describes the adventures I have
had in the years since Marvin Minsky and Seymour Papert invited
me to the Artificial Intelligence Laboratory at the Massachusetts
Institute of Technology in 1973. Working conditions were ideal,
thanks to Patrick Winston’s skillful administration, to the generos-
ity of the Advanced Research Projects Agency of the Department of
Defense and of the National Science Foundation, and to the freedom
arranged for me by Whitman Richards, under the benevolent eye of
Richard Held. I was fortunate enough to meet and collaborate with
a remarkable collection of people, most especially, Tomaso Poggio.
Included among these people were many erstwhile students who be-
came colleagues and from whom I learned much—XKeith Nishihara,
Shimon Ullman, Ken Forbus, Kent Stevens, Eric Grimson, Ellen
Hildreth, Michael Riley, and John Batali. Berthold Horn kept us
close to the physics of light, and Whitman Richards, to the abilities
and inabilities of people.

In December 1977, certain events occurred that forced me to
write this book a few years earlier than I had planned. Although the
book has important gaps, which I hope will soon be filled, a new
framework for studying vision is already clear and supported by
enough solid results to be worth setting down as a coherent whole.

Many people have helped me to live through this somewhat dif-
ficult period. Particularly, my parents, my sister, my wife Lucia, and
Jennifer, Tomaso, Shimon, Whitman, and Inge gave to me more
than I often deserved; although mere thanks are inadequate, I thank
them. William Prince steered me to Professor F. G. Hayhoe and
Dr. John Rees at Addenbrooke’s Hospital in Cambridge, and them
I thank for giving me time.

Summer 1979 David Marr
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1.2 Understanding Complex Information-Processing Systems
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Chomsky found. It even appears that the emerging “trace” theory of gram-
mar (Chomsky and Lasnik, 1977) may provide a way of synthesizing the
two approaches-——showing that, for example, some of the rather ad hoc
restrictions that form part of the computational theory may be conse-
quences of weaknesses in the computational power that is available for
implementing syntactical decoding.

The Approach of J. J. Gibson

In perception, perhaps the nearest anyone came to the level of computa-
tional theory was Gibson (1966). However, although some aspects of his
thinking were on the right lines, he did not understand properly what
information processing was, which led him to seriously underestimate the
complexity of the information-processing problems involved in vision and
the consequent subtlety that is necessary in approaching them.

Gibson’s important contribution was to take the debate away from the
philosophical considerations of sense-data and the affective qualities of
sensation and to note instead that the important thing about the senses is
that they are channels for perception of the real world outside or, in the
case of vision, of the visible surfaces. He therefore asked the critically
important question, How does one obtain constant perceptions in everyday
life on the basis of continually changing sensations? This is exactly the right
question, showing that Gibson correctly regarded the problem of percep-
tion as that of recovering from sensory information “valid” properties of
the external world. His problem was that he had a much oversimplified
view of how this should be done. His approach led him to consider higher-
order variables—stimulus energy, ratios, proportions, and so on—as
“invariants” of the movement of an observer and of changes in stimulation
intensity.

“These invariants,” he wrote, “correspond to permanent properties of
the environment. They constitute, therefore, information about the per-
manent environment.” This led him to a view in which the function of the
brain was to “detect invariants” despite changes in “sensations” of light,
pressure, or loudness of sound. Thus, he says that the “function of the
brain, when looped with its perceptual organs, is not to decode signals,
nor to interpret messages, nor to accept images, nor to organize the sen-
sory input or to process the data, in modern terminology. It is to seek and
extract information about the environment from the flowing array of
ambient energy,” and he thought of the nervous system as in some way
“resonating” to these invariants. He then embarked on a broad study of
animals in their environments, looking for invariants to which they might



















































46

Representing the Image

Figure 2-2. In a herringbone pattern such as this, a clear part of the spatial orga-
nization consists of the vertical stripes. These cannot be recovered by Fourier
techniques such as band-pass filtering the images, but yield easily to grouping
processes. (Reprinted by permission from Phil Brodatz, Textures: A Photographic
Album for Artists and Designers, Dover, 1966, pl. 16, 17.)

From these examples, we see that the attributes carrying the valuable
information may emerge at any of a range of scales in the real world, and
hence even more so in images because of the additional transformations
introduced by the imaging process. Whatever tokens are, we must therefore
expect them to be capable of making image features explicit over a wide
range of sizes. Furthermore, it is important to realize that these different
levels of organization do not correspond simply to what would be seen
through medium band-pass spatial-frequency filters* centered on different
frequencies. Although several types of organization can be detected in
this way, many cannot—for example, the vertical stripes in the pattern of
Figure 2-2.

We can therefore formulate our second physical assumption: The spa-
tial organization of a surface’s reflectance function is often generated by
a number of different processes, each operating at a different scale. Con-
sequently, a representation that uses changes in the image of such surfaces
to find changes in depth and surface orientation must be capable of cap-
turing changes in attribute values applied to tokens that span a wide range
of sizes in the image. In other words, the primitives of our representation
must work at a number of different scales.

*Such filters eliminate all spatial frequency components in the image outside a fixed range
of frequencies.






























56 Representing the Image

Figure 2—-10. Blurring images is the first step in detecting intensity changes in them. (a) In the
original image, intensity changes can take place over a wide range of scales, and no single operator
will be very efficient at detecting all of them. The problem is much simplified in an image that has
been blurred with a Gaussian filter, because there is, in effect, an upper limit to the rate at which
changes can take place. The first part of the edge detection process can be thought of as decom-
posing the original image into a set of copies, each filtered with a different-sized Gaussian, and
then detecting the intensity changes separately in each. (b) The image filtered with a Gaussian
having ¢ = 8 pixels; in (c), ¢ = 4. The image is 320 by 320 elements. (Reprinted by permission
from D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 204, pp. 301-328.)

There are two basic ideas behind the choice of the filter V*G. The first
is that the Gaussian part of it, G, blurs the image, effectively wiping out all
structure at scales much smaller than the space constant o of the Gaussian,
To illustrate this, Figure 2-10 shows an image that has been convolved with
wwo different-sized Gaussians whose space constants o were 8 pixels (Fig-
ure 2-10b) and 4 pixels (Figure 2-10c). The reason why one chooses the
Gaussian for this purpose, rather than blurring with a cylindrical pillbox
function (for instance), is that the Gaussian distribution has the desirable
characteristic of being smooth and localized in both the spatial and fre-
quency domains and, in a strict sense, being the unique distribution that
is simultaneously optimally localized in both domains. And the reason, in
turn, why this should be a desirable property of our blurring function is
that if the blurring is as smooth as possible, both spatially and in the
frequency domain, it is least likely to introduce any changes that were not
present in the original image.

The second idea concerns the derivative part of the filter, V°. The
great advantage of using it is economy of computation. First-order direc-
tional derivatives, like 8/dx or /9y, could be used, in which case one would
subsequently have to search for their peaks or troughs at each orientation
(as illustrated in Figure 2—8b); or, second-order directional derivatives, like
8°/ax” or 8/dy°, could be used, in which case intensity changes would









2.2 Zero-Crossings and the Raw Primal Sketch

Figure 2—13.

and negative, the overall average being zero. Positive values are repre-
sented here by whites, negative by blacks, and the value zero by an inter-
mediate gray. As we have seen, the critical fact about the operator V°G is
that its zero-crossings mark the intensity changes, as seen at the Gaussian’s
particular scale. The figures show this well. In Figure 2-12(c), for instance,
the filtered image has been “binarized”—that is, positive values were all
set to +1 and negative values to —1, and in Figure 2-12(d) the zero-
crossings alone are shown. The advantage of the binarized representation
is that it also shows the sign of the zero-crossing—which side in the image
is the darker.
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(@ (b)

Figure 2-15. Another example of zero-crossings; here, the intensity of the lines has been made
to vary with the slope of the zero-crossing, so that it is easier to see which lines correspond to the
greater contrast. (Courtesy BBC Horizon.)

those places at which the orientation of a zero-crossing changes “discon-
tinuously” The quotation marks are necessary because one can in fact prove
that the zero-crossings of VG * I can never change orientation discontin-
uously, but one can nevertheless construct a practical definition of discon-
tinuity. In addition, small, closed contours are represented as blobs, each
also with an associated orientation, average intensity slope, and size defined
by its extent along a major and minor axis. Finally, in keeping with the
overall plan, several sizes of operator will be needed to cover the range of
scales over which intensity changes occur.

Biological Implications

This computational scheme for the very first stages in visual processing
leads to an interpretation of many results from the psychophysical and
neurophysiological investigations into early vision and to a proposal for
the overall strategy behind the design of the first part of the visual pathway.

The psychophysics of early vision

In 1968, Campbell and Robson carried out some adaptation experiments.
They found that the sensitivity of subjects to high-contrast gratings was
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Representing the Image

(a) (b)

Figure 2—18. A mechanism for detecting oriented zero-crossing segments. In (a),
if P represents an on-center geniculate X-cell receptive field, and Q an off-center,
then a zero-crossing must pass between them if both are active. Hence, if they are
connected to a logical AND gate as shown, the gate will detect the presence of the
zero-crossing. If several are arranged in tandem as in (b) and are also connected
by logical AND’s, the resulting mechanism will detect an oriented zero-crossing
segment within the orientation bounds given roughly by the dotted lines. Ideally,
we would use gates that responded by signaling their sum only when all their P
and Q inputs were active. (Reprinted, by permission, by D. Marr and E. Hildreth,
“Theory of edge detection,” Proc. R. Soc. Lond. B 204, pp. 301-328.)

be detected by a mechanism that connects an on-center cell and an off-
center cell to an AND gate,* as illustrated in Figure 2—18(a).

It is a simple matter to adapt this idea to create an oriented zero-
crossing segment detector: simply arrange on- and off-center X cells into
two columns, as illustrated in Figure 2-18(b). If these units are all con-
nected by AND gates or some suitable approximation to them, the result
will be a unit that detects a zero-crossing segment whose orientation lies
roughly between the dotted lines of Figure 2-18(b). This idea provides the
basis for the model of cortical simple cells, which we shall derive in Section
3.4. It is enough to note here that such units would be orientation depen-
dent and spatial-frequency-tuned (as well as directionally selective, after
the modifications of Section 3.4). These are the units, 1 believe, that Camp-
bell and Robson found that they could adapt in their 1968 experiments.

*A simple logical device that produces a positive output only when all of its inputs are positive.
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Figure 2—19. The meaning of Logan’s theorem. (a) A stochastic, band-limited
Gaussian signal f(x). (b) The passband—in the frequency domain—of an ideal
one-octave band-pass filter. (c) The result f,(x) of filtering (a) with the filter
described by (b). Provided that (c) has no zeros in common with its Hilbert trans-
form, Logan’s theorem tells us that (c) is determined, up to a multiplicative constant,
by the positions of its zero-crossings alone. The aspect of Logan’s result that is
important for early visual processing is that, under the right conditions, the zero-
crossings alone are very rich in information. (Reprinted by permission from D.
Marr, T Poggio, and S. Ullman, “Bandpass channels, zero-crossings, and early visual
information processing,” J. Opt. Soc. Am. 69, 1979, fig. 1.)

The first complete symbolic representation of the image

Zero-crossings provide a natural way of moving from an analogue or con-
tinuous representation like the two-dimensional image intensity values
I(xp) to a discrete, symbolic representation. A fascinating thing about this
transformation is that it probably incurs no loss of information. The argu-
ments supporting this are not yet secure (Marr, Poggio, and Ullman, 1979)
and rest on a recent theorem of B. F. Logan (1977). This theorem states
that provided certain technical conditions are satisfied, a one-octave band-
pass signal can be completely reconstructed (up to an overall multiplicative
constant) from its zero-crossings. Figure 2—19 illustrates the idea; the proof
of the theorem is difficult, but consists essentially of showing that if the
signal is less than an octave in bandwidth, then it must cross the x-axis at
least as often as the standard sampling theorem requires.

Unfortunately, Logan’s theorem is not quite strong enough for us to
be able to make any direct claims about vision from it. The problems are
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Figure 2-20. The image (a) has been convolved with V°G having w,_, =
2V2 ¢ = 6, 12, and 24 pixels, These filters span approximately the range of filters
that operate in the human fovea. (b), (), and (d) show the zero-crossings thus
obtained. Notice the fine detail picked up by the smallest. This set of figures neatly
poses the next problem—How do we combine all this information into a single
description? (Reprinted by permission from D. Marr and E. Hildreth, “Theory of
edge detection,” Proc. R. Soc. Lond. B 204, pp. 301-328.)

in the world that give rise to intensity changes in an image are (1) illumi-
nation changes, which include shadows, visible light sources, and illumi-
nation gradients; (2) changes in the orientation or distance from the viewer
of the visible surfaces; and (3) changes in surface reflectance.

The critical observation here is that, at their own scale, these things
can all be thought of as spatially localized. Apart from the occasional dif-
fraction pattern, the visual world is not constructed of ripply, wavelike
primitives that extend over an area and that add together over it (compare
Marr, 1970, p. 169). By and large, the visual world is made of contours,
creases, scratches, marks, shadows, and shading, and these are spatially
localized. Hence, it follows that if a discernable zero-crossing is present in
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Figure 2—-22. 'The raw primal sketch represents a straight line as a termination,
several oriented segments, and a second termination (a). If the line is replaced by
a smooth curve, the orientations of the inner segments will gradually change (b).
If the line changes its orientation suddenly in the middle (c), its representation will
include an explicit pointer to this discontinuity. Thus in this representation, smooth-
ness and continuity are assumed to hold unless explicitly negated by an assertion.

(@ (b) © (d)

Figure 2-23. We cannot sense the primitive zero-crossings, only the description to which they -
give rise in the raw primal sketch. This can be seen in L. D. Harmon’s discretely sampled and

quantized image of Abraham Lincoln (a). No amount of voluntary effort allows us to see Lincoln

without defocusing the image or squinting the eyes, despite the fact that the zero-crossings in the

larger channels are producing an approximate representation of Lincoln’s face. (b), (¢), (d) The

zero-crossings from the three sizes of the VG operator used in Figure 2-20.
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(d)

Figure 2-25. Examples of terminations being made explicit. In (a) and (b) subjective contours
are constructed by joining termination points. In (c), points of discontinuity in orientation are seen
to have a linear arrangement. In the stereogram (d), terminations or discontinuities in the small
horizontal lines are probably being matched between the images to yield a square in depth. (Figs.
(a), (b) reprinted by permission from D. Marr, “Early processing of visual information,” Phil. Trans.
R Soc. Lond. B 275, 1976, figs. 9(a)(d). Fig. (d) reprinted by permission from B. Julesz, Foundations
of cyclopean perception, University of Chicago Press, 1971, fig. 3.6-3.)

to give this information here because although edges, bars, and blobs are
rather obvious things, terminations are much more symbolic and abstract.
The reader may therefore need some additional persuasion that these
things are indeed created and at a rather low level.

Figure 2-25 provides some examples on this point. We have defined
a termination as a discontinuity in the zero-crossing orientation or as the
termination point of a bar. Figures 2-25(a)—(c) show clear examples
where such terminations line up and where it is difficult to think of meth-
ods for detecting this fact that do not make the actual positions of the
discontinuities explicit. Figure 2-25(d), from Julesz (1971, fig. 3.6--3), is
even more interesting, because the things that are being matched in this
stereo pair are probably the small discontinuities in the horizontal lines,
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Figure 2—34. Another important aspect of the primal sketch is the construction of boundaries
between regions on the basis of cues that could be caused by discontinuities in surface orientation
or distance from the viewer. All examples in this figure are due to M. Riley, and they give rise
psychophysically to boundaries in the sense defined in the text. The boundaries in (a) to (c) could
be of geometric origin, but not in (d). Motion correspondence can be obtained between the

boundaries in (e) and (f).

uities occur in these measures. The reason for adding such boundaries to
the representation of the image is that they may provide important evidence
about the location of surface discontinuities. This point of view has the
important consequence that parameter changes likely to have arisen
because of discontinuities in the surface ought to be those that give rise to
perceptual boundaries, whereas those that probably could not have their
origins traced to geometrical causes should be much less likely to produce
perceptual boundaries. I call this the hypotbesis of geometrical origin for .
perceptual texture boundaries. The principal limitations on its usefulness
come from the fact that reflectance functions seldom have a precise geo-
metrical structure. For example, if there is an oriented component to the
surface structure, it is usually not very exact. Hence small changes in ori-
entation in an image that may be produced by small changes in surface
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Figure 3—7. The decoding of a random-dot stereogram pair by the cooperative
algorithm described in the text. The stereogram appears at the top, and the initial
state of the network, which includes all possible matches within the prescribed
disparity range, is labeled 0. The algorithm runs through a number of iterations, as
shown, and gradually the structure is revealed. The different shades of gray rep-
resent different disparity values.
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Figure 3—10. The high-frequency spectral components of this stereogram are rivalrous, yet the
low-frequency components are not and can be fused. This suggests that independent spatial-fre-
quency-tuned channels are involved in stereopsis. (Reprinted, by permission, from B. Julesz and
J. E. Miller, “Independent spatial-frequency-tuned channels in binocular fusion and rivalry,” Percep-
tiont 4, 1975, 125-143, fig. 6.)

thing similar—roughly three classes of disparity-tuned neurons, one class
broadly tuned to convergent (the so-called near neurons), and another
broadly turned to divergent (far neurons), and a third sharply tuned to
near-zero disparities. This goes against what one would expect of a neural
implementation of the algorithms I discussed above, since, apart from the
dipole model, all require many “disparity-detecting” neurons, whose peak
sensitivities cover a range of disparity values that is much wider than the
tuning curves of the individual neurons.

Finally, a remark about the motivation for the cooperative algorithm
approach. As 1 have mentioned, these ideas were all inspired by Fender
and Julesz’s (1967) exhibition of hysteresis in stereopsis. In their experi-
ment, they stabilized the images against eye movements and showed that
once fusion was achieved, the two images could be “pulled” apart by up
to about 2° of disparity before fusion “broke.” However, once fusion had
broken, the images had to be brought back to the 6'~14' range before they
would refuse. Hysteresis is one property of cooperative algorithms, and so
is filling-in, which also seems to occur in stereopsis—as the reader has
already seen, sparse stereograms like Figure 3—8 give the appearance of
a smooth, solid surface, not of a few dots hanging isolated in space. Hence
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Figure 3—11. 'The left and right images have different contrasts, yet fusion is still
possible.

looking at Figure 3—11. The contrasts must, however, have the same sign.
The criteria for orientation are also quite lax.

However, the other possibility is more promising. Indeed, the exis-
tence of independent spatial-frequency-tuned channels in binocular fusion
now acquires a new and special interest, because it suggests that several
copies of the image, obtained by successively finer filtering, are used during
fusion, providing increasing and, at the limit, very fine disparity resolution
at the cost of decreasing disparity range.

A notable feature of a system organized along these lines would be its
reliance on eye movements for building up a comprehensive and accurate
disparity map from two viewpoints. The reason for this is that the most
precise disparity values are obtained from the high-resolution channels,
and eye movements are therefore essential so that each part of a scene can
ultimately be brought into the small disparity range within which high-
resolution channels operate. The importance of vergence eye movements
is also attractive in view of the extreme precision with which they may be
controlled (Riggs and Niehl, 1960; Rashbass and Westheimer, 1961a).

These observations suggest the following scheme for solving the
fusion problem: (1) Each image is analyzed through channels of varying
coarseness and matching takes place between corresponding channels
from the two eyes for disparity values of the order of the channel resolution;
(2) coarse channels control vergence movements, thus causing fine chan-
nels to come into correspondence.

This scheme contains no hysteresis and therefore does not account
for the observations of Fender and Julesz (1967). According to our emerg-
ing theory of intermediate visual information processing, however, a key









Figure 3—-13. 'The solution of a 50% random-dot pattern. The left and right images
are shown at the top. The three lower figures indicate an orthographic view of the
disparity maps obtained by matching the zero-crossing descriptions of Figure 3—14.
A point in the image with coordinates (x,y) and an assigned disparity value of 4 is
portrayed in this three-dimensional system as the point (x,y,d). Here the heights of
the bright points above the plane indicate their disparity values.

In general terms, then, the overall structure of the algorithm is clear
from Figures 3—13 and 3-14. First, the coarse images are matched; the
results of this are illustrated in Figure 3-13(a), which shows an ortho-
graphic view of the resulting disparity map. This rough result is used as
the starting point for the same matching process applied to the medium-
sized channel. The decrease in the allowed disparity range is offset by the
knowledge, obtained from the large channel, of its approximate value. This
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Figure 3—19. (a) Panum’s original limiting case. When fused, the impression is of
two lines separated in depth. In (b), each dot in the right image is paired with two
in the left image. When fused, the viewer sees two planes. The doubling does not
have to be restricted to one image. (c) The results of running the stereo algorithm
on (b), disparity being displayed according to the same conventions as were used
for Figure 3~13. Two planes are found.
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(h)

Figure 3-23. 'These two stereograms have about the same disparity range, but in
(a) disparity varies continuously while (b) consists of just two disparity planes. It
takes longer to see this second one, presumably because the vergence control
system has less information about how to cover the disparity range.

Interestingly, there is some evidence that an observer can learn to
make an efficient series of vergence movements (Frisby and Clatworthy,
1975). However, this learning effect seems to be confined to the type of
information used by the closed-loop vergence control system. A priori,
verbal or high-level cues about the stereogram are ineffective, as, inciden-
tally, they seem to be at all levels of processing up to and including the
2V%2-D sketch.
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For surfaces changing in depth in the vertical direction:
9p  —alcotb
Wy, o+ @+

For surfaces changing in depth in the horizontal direction (the formula is
perforce more complicated):

3 o’ +B(B+1D —alcoth
s, o+ B+

There are two points to be noted about these formulas. First, like
estimates of fractional depth, they depend on the viewing distance /,
roughly as 1/, Hence, if the brain is doing its task, a given rate of change
of disparity should be perceived as an increasingly steep surface as its
distance away is increased. The reader can see this by looking at the ster-
eogram in Figure 3-26 from different distances. Disparity and viewing
angle change together, so dd/d is constant for all viewing distances. Hence,
the surface should appear to steepen as one moves the stereogram further
away, and it does. This also shows, incidentally, that the brain has a pretty
good idea of where the stereogram actually is and uses this information.

Second, when the horizontal rate of change of disparity 3/,
reaches 1, the line of sight from the other eye must fall directly along or
in front of the actual physical surface. The viewer then sees a discontinuity

Figure 3—26. Notice that if the viewing distance from this stereogram changes,
the perceived surface orientations change. This is to be expected if the visual system
is calculating its trigonometry correctly. (Bela Julesz, 1971, p. 156, fig. 5.4-2)
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Figure 3-31. The aperture problem. If the
motion of an oriented element is detected by a
unit that is small compared with the size of the
moving element, the only information that can be
extracted is the component of the motion per-
pendicular to the local orientation of the element.
For example, looking at the moving edge E
through a small aperture 4, it is impossible to
determine whether the actual motion is in the
direction of b or of c.

be detected directly through a small aperture placed over the edge is
motion at right angles to that edge—just one bit of information, indicating
whether it is moving forward or backward. Of course, if there is only a
point or blob or a termination of some recognizable kind, more infor-
mation can be recovered. And if one somehow knows 6, the angle between
the edge and the direction of motion b, then the speed s can be recovered
by measuring the component ssin 8 perpendicular to the edge. But the
very simple case in which just the sign is available has at least a theoretical
interest.

Various experiments suggest that this simple case is also of interest for
understanding one of the visual system’s ways of analyzing motion. The
experimental situation is like that used by Braddick (1973, 1974), and the
stimuli are shown in Figure 3-32. These experiments fall into the first of
his two classes, being concerned with short-range, short-term phenomena.

In Figure 3—32(a), the individual dot speeds in the central square are
all constant at twice the dot speeds in the surround, but the directions of
movement are all random. The central square proves invisible, so we can-
not use only speed of movement to separate the patches. Julesz (1971, ch.
4) described a similar effect. In Figure 3—32(b), the surround moves ran-
domly, while the center dots all move in the same direction but with dif-
ferent speeds, spanning a factor of 4. The square can be seen clearly, and
where the neighboring speeds are very different, the dots appear to have
some relative movement as well.

The remarks about the aperture problem tell us what we want to
measure and why we want to measure it. These psychophysical experi-
ments suggest that the visual system uses information about direction alone
to help carve up the visual field. We therefore explored algorithms for
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Figure 3—33. The value of X = V’G#Iand of Y = a/at(VzG * I) in the vicinity
of an isolated intensity edge. (a) The X signal as a function of distance. The zero-
crossing Z in the signal corresponds to the position of the edge. (b) The spatial
distribution of the Y signal when the edge is moving to the right, and (c) when it
is moving to the left. Motion of the zero-crossing to the right can be detected by
the simultaneous activity of X 'YX~ in the arrangement shown in (b). Motion of
the zero-crossing to the left can be detected by the X*Y "X~ unit in (c).
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(b) (©

Figure 3-36. 'The detection of a moving zero-crossing. (a) X~ and X subunits
are combined through a logical AND operation. Such a unit would signal the
presence of a zero-crossing of a particular sign running between the two subunits.
A row of similar units connected through a logical AND would detect the presence
of an oriented zero-crossing within the orientation bounds given roughly by the
dotted lines in (b). In (¢), a Y unit is added to the detector in (b). If the unitis Y™,
it would respond when the zero-crossing segment is moving in the direction from
the X* to the X™. If the unit is Y~, it would respond to motion in the opposite
direction.

the addition of one Y-cell input, again via an AND gate, in order to make
it directionally selective.

The basic unit is shown in Figure 3—-36(c), which is Marr and Ullman’s
(1979) XYX model for the simplest type of cortical simple cell. Its receptive
field has three components, sustained on-center X inputs, sustained off-
center X inputs, and a Y input. The X units need to be all the same size and
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(d)

Figure 3—38. Separating a moving figure from its background by using combi-
nations of directionally selective units. A central square in (a) is displaced in (b) to
the right. The background in the two pictures moves the opposite way. (¢) The
zero-crossing contours of (a) filtered through V2G. (d) The convolution of the
difference between (a) and (b) with V3G, If () and (b) are presented in rapid
succession, the function shown in (d) approximates the value of 8/81( VG = I). The
images are 400 X 400 pixels, the inner square is 200 X 200, each dot is 4 X 4,
and the motions are 1 pixel. (courtesy John Batali.)

in rapid succession. Figure 3—40(a) shows the results of applying the XYX-
motion-detection operation to the zero-crossings of Figure 3-38(c). The
direction of movement has been coded, as indicated by the star in the
figure. As can be seen, black represents motion to the right, and white
represents motion to the left. The central square is clearly delineated by
discontinuities in the direction of motion.

The same analysis was also applied to the natural images shown in
Figure 3-39, which are two successive frames taken from a 16-mm film of
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Figure 3-39. Two successive frames from a 16-mm movie of a basketball game.
The same analysis was applied as to the random-dot patterns in Figure 3-38, (Cour-
tesy BBC.)

a basketball game, The results appear in Figure 3—40(b). For example, the
left arm of player 7 moved downward and to the left, and the rightmost
player moved to the right. Because of the extreme sensitivity of the method,
small registration errors, more or less unavoidable because of the way the
two images are digitized, sometimes give rise to spurious motion of the
background.

Psychophysically, the XYX-motion-detection scheme fits well into the
first of Braddick’s two categories. For example, the phenomenon should
occur only over short ranges (around w/V/2 or 15’ at 5° eccentricity) and
short ISI's (not more than the total time course of the temporal component
of the transient channel, about 120 ms), according to Wilson’s channel data.
If speed and not direction were the only available discriminant, separation
should be impossible, which we have found psychophysically (Figure
3-32).

In addition, the amount of information that can be obtained from
directional selectivity depends on the direction of movement and on the
orientation of the moved elements. Hence, the same velocity field may be
seen as coherent or incoherent, depending on the orientations of the
moved elements. The reason is that two nearby velocity vectors will pro-
duce the same directional sign on an element oriented roughly perpen-
dicular to them but different signs on an element whose orientation bisects
them. We also found this to be true psychophysically. Moreover, if the
formation of coherent groups proceeds roughly in the manner of Figure
3-37, one might expect to see clusters of locally coherent motions in even
purely random display sequences—and, in fact, one does. Such a mecha-
nism also produces Anstis’ (1970) reversed phi phenomenon, whereby
simultaneous movement and contrast reversal can give rise to the illusion
of movement in the opposite direction (see Marr and Ullman, 1979).
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Figure 3-53. The structure-from-motion problem. This set of frames contains
three-dimensional information (see Figure 3-52). How are we to recover it?

that solution is also the correct one physically; and unspecific because the
system works in unfamiliar situations, without specific a priori knowledge
of the shapes to be viewed.

A previous approach

Although there have been a number of previous approaches to this prob-
lem, only one of them deserves comment. It originated with Helmholtz
(1910; Braunstein, 1962; Hershberger and Starzec, 1974) and initiated the
idea that motion and stereopsis are analogous: Specifically, recovering
structure from motion is analogous to recovering distance from disparity.
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The idea is, however, seriously flawed, because different objects in
different parts of the visual field can be engaged in quite different motions.
Now for the correspondence problem this does not matter, since that is
essentially a local process. We have already made use of the fact that, for
rigid objects and short time intervals, the two correspondence problems
are in fact equivalent. We noted, however—without worrying particularly—
that two different local motions would induce two different eye-pair
positions to produce the equivalent stereo correspondence problem.
The reason why this is not at all worrisome is that for correspondence the
combination rules do not depend upon the precise position of the eyes.
They have only to be close together and so have similar views. Hence,
correspondence is unaffected by the fact that different portions of the visual
field effectively induce different equivalent eye-pair positions.

Not so for the recovery of depth from disparity, however. As we saw,
this depends critically on the effective interocular distance 3, and the
induced &’s are in general different for each differently moving rigid object.
There is no way of deducing their values a priori, and since they change,
there is no way of comparing what is happening in one part of the visual
field with what is happening in another. Hence, although this approach is
actually valid for the correspondence problems in the two domains (pro-
vided one restricts oneself to rigid motions and short time intervals), it is
not valid at all for the recovery of three-dimensional structure,

It follows from these arguments that changes in velocity in the visual
field (which are the analogues of changes in disparity) should not yield

1 2 3
Z)’
1
3
v’ v 7 2
(a) (b)

Figure 3—54. The conveyor belt demonstration. The dots in regions 1 and 2 move
to the right with speed v" = v cos 0, and those in region 2 with speed v. However,
the observer of (a) does not perceive the geometrical configuration (b). Instead,
all of the regions appear in the frontal plane, and the dots appear to move faster
in region 2. (Reprinted from Shimon Ullman, The Interpretation of Visual Motion,
by permission of The MIT Press, Cambridge, Massachusetts, fig. 4.2. Copyright ©
1979 by The Massachusetts Institute of Technology.)
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(h) (c)

(d) (e)

Figure 3-57.

Four structures of importance in studying the a priori conditions that we bring to

bear on the analysis of an occluding contour. (a) A three-dimensional surface, Z. (b) Its silhouette
S\, as seen from viewpoint V. (c) The contour C,, of S, (d) The set of points I, that project onto the
contour. (e) A condition for the theorem discussed in the text. In particular, the meaning of “all
distant viewing positions in any one plane” is shown.

The second assumption says that, except possibly in a very few
instances, points that appear to be close together in the image actually are
close together on the object’s surface. The illustration in Figure 3-58(a)
helps to explain this assumption. Think of @ and & as being two hills, with
the contour generators that give rise to @ and b following the skyline on
the top of each hill. If the dashed portion of b happens to be invisible, then
at point P the visible contour generator leaps from one hill to the next—
it is discontinuous. The sharp concavity at P, in fact, hints of this disconti-
nuity, and so we half expect it. In the body of a and b, however, we do not
expect it to happen, and in fact we assume it does not. This is our second
assumption, and it says that nearby points on the contour in an image
arise from nearby points on the contour generator on the viewed object.

The last assumption is a little more sophisticated, for it pertains to the
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Figure 3-73. An explanation of gradient space. The local normal to the surface
(a) can be represented as a vector (@,b,¢), as in (b). Since we are interested only
in the vector’s direction, this can be reduced to (a/c, b/c, 1), which can be repre-
sented as the two-dimensional vector (a/c, b/c), as in (c). The quantity a/c is usually
denoted by p, and b/c by g.

is the outgoing normal to the tangent plane at that point. Now take the
same tangent plane, move it to the origin of the coordinate system, and
draw in its normal OP, as in Figure 3—73(b). Suppose the coordinates of
P happen 10 be (a, b, ¢). It clearly does not matter how long OP is, since
only its direction matters, so we could just as well use the point P’ at (a/c,
b/c, 1). But now we can represent P’ by just two numbers, (a/c, b/c)—that
is, by just the two-dimensional point P in Figure 3-73(c). This is the gra-
dient space representation of surface orientation.
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Figure 3-81. Some well-known brightness illusions. (a) The Hering grid. (b) An
illusion by Robert Springer that provokes the appearance of faint diagonal lines.
(¢), (d) The Benussi ring; notice how the simple addition of a contour in (d) can
cause the two gray regions to look different. (e) The Kanizsa triangle.
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] ] 1 = [ ] 1 1 ] 1
(a)

X= 3 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Y

58 171 169 167 167 166 165 166 164 167 171 171 174 174 175 173 171
57 168 168 168 167 166 167 167 165 169 168 174 176 175 175 175 172
56 168 167 167 165 166 166 167 167 168 170 178 177 176 174 174 173
55 168 168 165 169 167 168 167 165 168 175 177 177 175 175 172 171
54 169 170 167 169 169 168 163 166 172 169 174 173 175 178 173 173
53 171 169 170 168 169 168 169 168 168 170 175 173 175 177 178 176
52 172 171 170 168 169 169 167 168 173 172 173 177 174 175 178 176
51 172 174 171 170 166 168 167 168 172 172 172 177 179 172 175 175
50 171 167 176 169 170 169 168 169 171 172 174 174 173 173 174 178
49 174 172 173 173 173 174 171 171 172 174 172 172 172 169 173 173
48 173 173 173 176 178 172 171 174 174 173 175 175 175 173 173 171
47 173 175 178 173 173 171 171 175 175 177 178 175 174 173 175 178
46 178 175 174 169 173 175 177 175 177 177 174 175 176 177 177 174
45 173 175 173 174 172 173 174 175 174 171 173 174 175 174 172 171
44 177 174 175 175 172 171 172 176 172 173 172 172 173 170 170 175
43 173 171 174 168 176 172 173 173 173 174 171 174 175 173 174 174
42 175 173 171 172 170 171 176 175 178 172 174 175 175 175 175 172
41 181 179 177 172 170 170 169 179 175 174 175 174 172 175 174 175
40 188 184 179 178 176 176 176 174 172 178 172 174 173 172 174 173
39 195 191 188 186 185 183 180 177 178 175 174 176 175 174 176 176
38 200 199 197 193 190 187 185 180 176 175 180 177 175 175 176 177
37 202 202 199 202 199 194 187 180 175 179 177 176 174 175 176 173

(b)
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10

(a)

Density Disparity

—

(b) (©

Figure 4—5. The stereogram (a) has the density distribution given in (b) and the
disparity distribution indicated by the solid lines in (c). Such a stereogram can be
used to explore psychophysically whether and how we interpolate across the gap.
The dotted lines in (c) illustrate two interpolation possibilities.

it allows without additional evidence. He created various stereograms like
the ones depicted in Figure 4-5, in which the density and disparity both
decrease toward the center, as shown. The question is, How, if at all, does
the observer fill in across the region where there are no dots? Two of the
three possible candidates are shown in Figure 4—5(c): Candidate A fills in
straight across with constant disparity; candidate B (not shown) produces
some smooth interpolation that connects the two surfaces without any
discontinuity in surface orientation; and candidate C continues the surfaces
linearly until they intersect.

What the viewer perceives can be determined by putting a probe spot



4.8 Interpolation, Continuation, and Discontinuities

287

A B

r

Cl 1 C“’ C3
Figure 4-6. In this stereo pair, C, is seen at the same depth as C, and C,, despite
the fact that there are no disparity cues to the depth of C,.

in the intermediate region at various disparities and asking the viewer
whether it lies above or below the place “where the surface goes.” Grimson
found that the percept is unfortunately not a vivid one in these circum-
stances; although the subjects confidently exclude possibilities A and C,
they are vague about the position of B. They never report any discontinu-
ities in surface orientation. He concluded that although there seems to be
some interpolation, the matter is not straightforward. I shall look at the
computational side of the problem a little later.

The second aspect of the problem is what I shall call continuation,
which is best illustrated by a stereo pair of Andrew Witkin’s, shown in
Figure 4—-6. This stereogram is perceived as two rectangles A and B occlud-
ing a continuous rectangle containing C,, C,, and C;. The curious thing
about this demonstration is that the information about stereo disparity can
come from only the vertical lines in the figure. Thus, regions 4, B, C,, and
C, contain points at which the disparity is defined, and the fact that we see
each as a whole surface is a problem only in interpolation. But for region
C, there are no such cues. The fact that it is assigned the same depth as C,
and C,; must therefore be the result of some continuation process operating
“behind” the occluding planes A and B. It is critically important for the
demonstration that lines like the horizontal edges of C,, C,, and C; be in
good alignment. It is as though their accurate alignment in the two-dimen-
sional image allows them to be viewed as evidence of the same surface
discontinuity in three dimensions, which then allows surface C, to be seen
at the same depth as surfaces C; and C;. A similar inference may perhaps
be made from some experiments by Naomi Weisstein (1975), who dis-
played a drifting grating, occluded a central rectangular patch of it, and yet
found adaptation effects occurring even within this patch.

These experiments suggest that the viewer-centered representation of
surfaces may be capable of representing more than one surface at once. It
may also be significant that in suitably constructed random-dot stereo-
grams, like that given in figure 3-19(b), one can simultaneously and vividly
see two surfaces. 1 personally cannot see three at once (compare Julesz,
1971, fig. 5.7-1), although there may be people who can.
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Necker cube, be due to constraints
embedded in the 2Y%-dimensional
sketch.

NN

Figure 4-9. The strange reversal of / . :
this figure may, like the reversal of the \/‘ .

is done in the 2%2-D sketch proper and how much occurs as this immediate
representation is computed into a three-dimensional representation of the
kind that we remember (see the next chapter). Examples like the Penrose
triangle, many of Escher’s figures, and even Figure 4—9 probably depend
on a mixture of effects, some local in the 2Y%-D sketch, and other effects
due to a failure to construct an overall, consistent three-dimensional inter-
pretation from a set of local views.

One final point that might be thought puzzling. Why should the Necker
cube reversal occur when depicted in a random-dot stereogram? It might
be argued that since stereopsis definitely assigns the edges all to a plane,
the figure should be seen in two-dimensions and not in three. I think it is
best to regard all contours in the 22-D sketch as trying for a three-dimen-
sional interpretation. The fact that the contours are put there by stereopsis
rather than by, say, the primal sketch is unimportant.



CHAPTER 5

Representing Shapes
for Recognition

5.1 INTRODUCTION

We come now to the final and perhaps most fascinating of the steps in our
overall program, the transformation of shapes from a representation that
is matched to the processes of perception into a representation that is
suitable for recognition. There are many issues to be explored here, and
this chapter, which rests heavily on Marr and Nishihara (1978), touches
only the surface of some of them. Nevertheless, the main ideas are once
more clear in outline, and I shall emphasize exactly what creating a shape
representation that is suitable for recognition entails. This involves us in
a discussion of what recognition is and how it comes about.

The single most important point is that we must now abandon the
luxury of a viewer-centered coordinate frame on which all representations
discussed hitherto have been based because of their intimate connection
with the imaging process. Object recognition demands a stable shape
description that depends little, if at all, on the viewpoint. This, in turn,
means that the pieces and articulation of a shape need to be described not
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Figure 5—1. 'These pipe cleaner figures illustrate several of the points developed
in this chapter. A shape representation does not have to reproduce a shape’s surface
in order to describe it adequately for recognition; as we see here, animal shapes
can be portrayed quite effectively by the arrangement and relative sizes of a small
number of sticks. The simplicity of these descriptions is due to the correspondence
between the sticks shown here and natural or canonical axes of the shapes
described. To be useful for recognition, a shape representation must be based on
characteristics that are uniquely defined by the shape and that can be derived
reliably from images of it. (Reprinted by permission from D. Marr and H. K. Nishi-
hara, “Representation and recognition of the spatial organization of three-dimen-
sional shapes,” Proc. R. Soc. Lond. B 200, 269-294.)

the representation uses an object-centered coordinate system. There are,
of course, several versions of each type.

For recognition tasks, viewer-centered descriptions are easier to pro-
duce but harder to use than object-centered ones, because viewer-centered
descriptions depend upon the vantage point from which they are built. As
a result, any theory of recognition that is based on a viewer-centered rep-
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front. If this is done, the representation is slightly weakened in terms of
the uniqueness criterion, but not as severely as a purely viewer-centered
representation would be. Another strategy is to use a shape’s visible com-
ponents whenever their recognition is easy but that of the overall shape is
difficult. For example, the front view of a horse usually contains an excellent
view of the horse’s face, which can be recognized directly and provides

(@ (®)

© @

Figure 5-9. These views of a water bucket illustrate an important characteristic
of any system based on the derivation of canonical axes from an image. The tech-
niques useful for the axis shown in (b) from the image (a) are quite different from
those that are best for situations where the axis is foreshortened, as in (c) and (d).
(Reprinted by permission from D. Marr and H. K. Nishihara, “Representation and
recognition of the spatial organization of three dimensional shapes,” Proc. R. Soc.
Lond. B200, 269~294.)
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ViG*I(xy),
where V2G(r) = —% 1—i exp —_r:
o 20° 20
()

Light

Optic nerve fibers

Ganglion cells

Inner synaptic layer

Amacrine cells
Bipolar cells
Horizontal cells

Outer synaptic layer

Receptor nuclei <

Receptors <|-
Pigmented layer
(Epithelium cells)

(b)

Figure 7-1. (a) The mathematical formula that describes the initial filtering of an image. V2 is
the Laplacian, G is a Gaussian, / (x,y) represents the image, and * the operation of convolution. (b)
A cross section of the retina, part of whose function is to compute (a). (¢) The circuit diagram of

a silicon chip, built by Graham Nudd at Hughes Research Laboratories, which is capable of com-
puting (a) at television rates.
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(c)

Figure 7—1 (continued).

I cannot really accept that the computational theory is so independent of
the other levels. To be precise, I can imagine that rwo quite distinct theories
of a process might be possible. Theory 1 might be vastly superior to theory
2, which may be only a poor man’s version in some way, but it could
bappen that neural nets bave no easy way of implementing theory 1 but
can do theory 2 very well. Effort would thus be misplaced in an elaborate
development of theory 1.

Yes, this could certainly happen, and I think it already has in the case
of deriving shape from shading. I would not be at all surprised if it was
unreasonably difficult to solve Horn'’s integral equations for shape from
shading with neural networks, yet the equations can be solved on a com-
puter for simple cases. Human ability to infer shape from shading is very
limited, and it may be based on simplistic assumptions that are often vio-
lated—a sort of theory 2 of the kind you mentioned. Nevertheless, I doubt
that the effort put into a deep study like Horn'’s was misplaced, even in the
circumstances. Although it will not yield direct information about human
shape-from-shading strategies, it probably provides indispensable back-
ground information for discovering the particular poor man’s version that
we ourselves use.

What about the old feature detector ideas? How did they fit in?

Historically, I think, the notion of a feature—and I would not now care
to define it at all precisely—played an important role in shifting our con-
ceptions away from Lashley’s mass-action ideas (according to which the





































































Afterword

Marr’s Vision and Computational Neuroscience

Tomaso Poggio

THIRTY YEARS AGO: A VISION OF COMPUTATIONAL
NEUROSCIENCE

The link between computation and neuroscience—the realization
that the brain is a computer—is old. Turing wrote about it. Mc-
Culloch, Pitts, and Lettvin followed the idea from the perspective of
both computation and of neuroscience. Seeds of the idea can be found
in centuries-old writings. Though it may not be true that this book
started the field known as computational neuroscience, it is certainly
true that it had a key role in its beginning and rapid growth. A few
years ago at Cosyne, the main conference for computational neuro-
science, I mentioned David Marr’s work in my keynote talk. In the
days afterward, a surprising number of well-known researchers came
to me to recount how they entered the field after reading Marr’s book
and thought that their career was indeed due to Vision!
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THIRTY YEARS LATER

Thirty years later we still do not understand the brain. Of course, this
is not surprising. The problem of intelligence—of how intelligence
is created by the brain and of how to make intelligent machines—is
one of the greatest problems in science, possibly the most fundamen-
tal of all. In 1976 when I was working with Marr for a three-month
period at MIT, we fully realized that a satisfactory understanding
was far away because the problem was so deep and so difficult. At the
time, we had hopes, however, that computational insights could help
decrypt puzzles in neuroscience—in particular, in the neuroscience
of the visual system. An example is the work we did with Francis
Crick at the Salk Institute in La Jolla in 1979 (the discussions among
the three of us plus Leslie Orgel eventually became the third part
of Vision) trying to link the number and properties of cells in layer
4¢3 of primary cortex (V1) to computations based on the sampling
theorem. Today, it is fair to say that, as a scientific community, com-
putational neuroscience still disagrees about which computations are
performed by the visual cortex. In a similar way, one could argue
that system physiology has made little progress and, in fact, was
not rescued at all by computational neuroscience, as we—and many
others—had hoped. What has happened since the publication of
Vision? What will happen next?

THE “LEVELS OF UNDERSTANDING” MANIFESTO

In trying to provide some answers, I start from one of the most en-
during frameworks in Marr’s Vision, which has been often cited and
reformulated in many ways. The simple observation is that a complex
system—Ilike a computer and like the brain—should be understood
at several different levels. For the purpose of this brief finale, let me
list just three levels: the hardware, the algorithms, and the computa-
tions. In Vision, Marr emphasizes that explanations at different levels
are largely independent of each other: a software engineer does not
need to know the hardware in any great detail. The message was im-
portant at the time: the study of the problems to be solved—and
of the associated computations—is relevant in its own right and is
needed for a full understanding of the brain. I argue, however, that
it is now time to reemphasize the connections between levels, if we
want to make progress in computational neuroscience.
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To explain let me recount the background of the argument. The
section in Vision about levels of understanding is directly based on
a paper (Marr and Poggio 1977) we wrote together for a booklet
of NRP (the influential Neuroscience Research Program founded at
MIT by Frank Schmitt) to which I had been invited to contribute.
That paper was the original “manifesto” of our computational ap-
proach to the brain. Its content was a summary of a few long discus-
sions Marr and I had in the spring of 1976 about levels of analysis of
a complex system. We started with an argument described in a long
paper (Reichardt and Poggio 1976) on the visual system of the fly.
In this paper, Reichardt and I distinguished the three levels of single
cells and circuits, of algorithms, and of behavior (of the organism).
Marr insisted, correctly, on replacing the behavior level with the
level of computation and of computational analysis. This was impor-
tant for defining the approach of computational neuroscience. One
key aspect of the original argument in Reichardt and Poggio 1976,
however, almost disappeared in the process. In that paper we stressed
that one ought to study the brain at different levels of organization,
from the behavior of a whole animal to the signal low—that is, the
algorithms—to circuits and single cells. In particular, we expressed
our belief—and Reichardt had written about it even earlier—that
(1) insights gained on higher levels help ask the right questions and
do the right experiments at lower levels, and (2) it is necessary to
study nervous systems at all levels simultaneously. From this per-
spective, the importance of coupling experimental and theoretical
work in the neurosciences follows directly: without close interaction
with experiments, theory is very likely to be sterile.

I believe that computational neuroscience over the past thirty
years can be described—of course to a first approximation—as most-
ly exploring each level of understanding independent of the others.
To illustrate the point, let me sketch some of the past research trends
in computational neuroscience.

RECENT TRENDS IN COMPUTATIONAL NEUROSCIENCE

Much interesting work has been done at different levels. The most
basic is probably at the level of biophysics and elementary circuits.
A good example is provided by present models of realistic cortical
networks, yielding oscillations in the gamma band and analyzing
circuits and channel dynamics capable of generating them. Another
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example is the experimental and theoretical work on circuits with
balanced excitation and inhibition and their properties in terms of
transmitting and gating information. The analysis of their proper-
ties is developing in parallel with the experimental characterization
of balanced excitation and inhibition in many brain areas. Another
instance of computational work at a somewhat higher level is the
analysis, in simulated networks, of operations such as normalization
to explain properties of shape recognition, motion estimation, and
attention.

It is thus not surprising to find quite a few exemplars of this type
of work in conferences such as Computational and Systems Neuro-
science, or Cosyne. At the same time, one also finds at Cosyne papers
at the computational level, where neurons are not mentioned at all.
An obvious recent trend is the emphasis on Bayesian inference as a
framework to model the brain: graphical models and hierarchical
Bayesian models have been presented as appropriate languages to
describe the computations and the algorithms used by nervous sys-
tems. An obvious feature of this trend today is that the connection
with neurons is missing (though some interesting efforts have been
made).

Overall, this body of work at the lowest and the highest levels is
what Marr prescribed and provides good foundations for the field.
Naturally, Marr’s message is sometimes lost. For instance, an expla-
nation of the biophysics of oscillations in the neural activity of corti-
cal areas appears to be regarded in several papers as a full explanation
in itself, whereas, in the spirit of computational neuroscience, one
must also eventually understand what is the computational role of
oscillations and what is the algorithm that controls them. In other
words, oscillations may be a symptom or the mechanism of atten-
tion, but which computation is actually performed by oscillations?

The level of understanding philosophy also suggests that attempts
to understand the brain exclusively within a bottom-up approach
are unlikely to succeed. The Blue Brain project—which of course is
worthwhile for a number of reasons—could be misinterpreted from
this point of view as an attempt to reconstruct every detail of a corti-
cal column along with the belief that one would then be able to infer
the computations performed by the cortex. At the other end of the
spectrum, Bayesian explanations of psychophysical data—though
intriguing and successful—cannot be accepted yet as a complete ex-
planation since in most cases the connection with the underlying
neural circuits is missing.
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HOW TO UNDERSTAND INTELLIGENCE

This brief look at computational neuroscience in the last decades sug-
gests that, though the problem is far from being solved, significant
progress has been made at each of the levels of understanding—in a
sense following Mart’s prescription. After thirty years it is now time
to go beyond it and shift gears. I feel that Marr would also think it is
time to look again at the levels of understanding framework—now
emphasizing the connections between levels and their synergies. In particu-
lar, I believe that neuroscience can help computational theory and
even computer science as suggested by recent models of visual cor-
tex, which are leading to interesting approaches in computer vision.
In 1989, when Marr wrote Vision, our belief was that computational
theories would help neuroscientists. The rise of computational neu-
roscience during the last several years has shown that to some extent
this has indeed happened. Importantly, the table is now turning: in
the near future, neuroscience may well be providing new ideas and
approaches to artificial intelligence.

Emphasizing the connections between levels is also a recognition
that the problem of explaining the brain is very difficult and that we
need to use every bit of information, every approach, every technique
we have. It is important also to recognize, as I mentioned, that the
emphasis on coupling the different levels de facto implies an em-
phasis on a very close interaction between experiments and models,
as a necessary condition for fruitful future work in computational
neuroscience.

Finally, let me comment on the problem of learning, which is an
intriguing and interesting omission in Marr’s Vision quest to under-
stand intelligence and the brain, especially because learning was the
focus of his famous papers (1969, 1970) on the cerebellum and the
neocortex. I am sure that this omission would have been corrected
had Marr had the time. Of course it is important to understand the
computations and the representations used by the brain—this is the
main objective of the book—but it is also important to understand
how an individual organism, and in fact a whole species, learns and
develops them from experience of the natural world. One could even
argue that a description of the learning algorithms and their a priori
assumptions is deeper and more useful than a description of the de-
tails of what is actually learned. I have been arguing for the last two
decades that the problem of learning is at the core of the problem
of intelligence and of understanding the brain. Learning, I think,
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should have been included explicitly in Turing’s operational defini-
tion of intelligence—his famous Turing test. Not surprisingly, the
language of modern statistical learning, including regularization,
SVMs, graphical models, hierarchical Bayesian models, is permeat-
ing various areas of computer science and is also a key component of
today’s computational neuroscience. I am not sure that Marr would
agree, but I am tempted to add learning as the very top level of un-
derstanding, above the computational level. We need to understand
not only what are the goals and the constraints of a computation are
but also how a child could learn it and what the role of nature and
nurture is in its development. Only then may we be able to build
intelligent machines that could learn to see—and think—without
the need to be programmed to do it.



Glossary

Action potential The self-regenerating electrical spike that propagates
down an axon, thus transmitting a signal from one cell to the next via
a synapse. The mechanism of the conduction of this signal was elu-
cidated by A. L. Hodgkin and A. F Huxley.

Adjunctrelation A flexible way of specifying the relative positions of two
axes in a 3-D model, usually used to relate a component axis to the
model’s principal axis (see Figures 5—4 and 5-5).

Area 17 The striate cortex.

Band-pass channel A filter that allows only a particular band of frequen-
cies to pass through it.

Bit map A convenient way of representing rough position in an image.
A two-dimensional array is set in correspondence with the x- and y-
coordinates in an image, and the positions of items are represented
by putting a 1 at the appropriate point in the array.

Blocks world The visual domain of matte white, plane-faced blocks
viewed against a dark background. Much early machine vision was
conducted in this domain.
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Complex cells An orientationally sensitive class of cells in the visual cor-
tex discovered by Hubel and Wiesel. These cells are more complicated
than simple cells in that their response is not a linear function of the
spatial stimuli falling within their receptive fields, but they do not
show any particular sensitivity to the termination of edges and bars.

Component axis A subsidiary axis of a 3-D model, for example, the neck
axis in a quadruped 3-D model.

Conjunctive eye movements Eye movements that change the average
direction of gaze of the two eyes.

Contour generator The locus of points on a visible surface that gives rise
to a contour in the surface’s image.

Convolution (*) Formally, the convolution of two functions f(x) and g(x)
is given by frg(x) = [f(x") g(x — x") dx'. For the case of an image, its
meaning may be visualized more easily in terms of receptive fields.
Suppose we place at position (x,) in an image a weighted receptive
field, perhaps with a center—surround organization. This field adds up
linearly the contributions from each part of the image as “seen”
through the receptive field—that is, points in the center receive a
strong positive weighting and those in the surround a weaker negative
weighting. The result is the value of the convolution of the image with
the function represented by the receptive field weights at that one
particular point (x,p). Thus to calculate directly the convolution of the
whole image, that is, for every point (x), can be a computationally
expensive process.

Cooperative algoritbm A nonlinear algorithm in which purely local
operations appear to cooperate to produce order on a global scale in
a well-regulated manner. So called after cooperative phenomena in
physics, like the Ising model of ferromagnetism, superconductivity,
and phase transitions in general. Cooperative algorithms share many
characteristics with these phenomena.

V2G  The Laplacian operator applied to a Gaussian distribution in two
dimensions. The result has a Mexican-hat shape and can be written:

V2G(r) = —1mot (1 — v¥20?) exp (—r¥20?)
1t is illustrated in Figure 2-9.

Depth Viewer’s subjective impression of the distance to the visible sur-
face.

Description A description is the result of applying a representation to a
particular entity (see Representation).

Differential operators Spatial differential operators like ¢/dx and d/dy
can be realized approximately by convolution operators with appro-
priately shaped receptive fields. Some of these are diagrammed in
Figure 2-11.

Dip See Slant.
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Disjunctive eye movements Eye movements that change the relative
directions of gaze of the two eyes, making them more convergent or
more divergent, while leaving their average direction of gaze
unchanged.

Disparity 1f two items are positioned at different distances from the
viewer, the relative positions of their images in the two eyes will differ.
This difference, usually measured in minutes of arc, is called disparity.
A 1-in. depth difference at a distance of 5 ft straight ahead will produce
a disparity of about 1".

Distance Usually refers to objective three-dimensional distance from the
viewer to the visible surface.

DOG A function composed of the difference of two Gaussian distribu-
tions. Such functions are thought to describe the shape of the receptive
fields of the retinal ganglion cells and the shape of the receptive fields
associated with Wilson’s four-channel model of early visual processing.
They are very close in shape to the ideal function VG (see Figure
2-16).

Eccentricity Usually refers to the angle out from the central fovea of the
retina.

Emittance angle The angle of emittance e is the angle between a ray of
light reflected from a surface and the normal to the surface.

Entropy Roughly speaking, the entropy of a probability distribution mea-
sures how chaotic the distribution is. Thus the entropy is low if the
distribution is concentrated around one value, and zero if it is con-
centrated on exactly one value. A uniform distribution has the maxi-
mum entropy. Formally, for a discrete distribution with outcomes
1,2,...,14,...having probabilities p,, p, ..., D ..., the entropy g(p)
of the distribution is given by g(p) = = — p,log, p,.

i

Fast Fourier transform A fast digital algorithm for carrying out a Fourier
transform on a discrete array whose dimensions are a power of 2. It
was devised by J. M. Cooley and T. W. Tukey. Recently S. Winograd
devised an even faster algorithm known as the very fast Fourier trans-
form (VFFT).

Frontal plane The plane lying perpendicular to the line of sight.

Gaussian (G) The so-called Gaussian or normal distribution has the
form G(r) = (1/2mo?) exp (—r¥20?) in two dimensions.

Gradient space A way of representing three-dimensional surface orien-
tation by a point on a two-dimensional graph, usually denoted by (p.g)
(see Section 3.8 and especially Figure 3-73).

Higb-pass filter A filter that allows through only the high frequencies in
a signal (these could be high spatial or temporal frequencies).

Horopter There are several definitions of the horopter, but in this book
it refers to the zero-disparity surface for the current positions of the
eyes.
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Hyperacuity Humans can carry out a variety of tasks to accuracies that
are more precise than the dimensions of the retinal cones from which
the information originates. Foveal cones have a diameter of about 27,
yet many tasks yield accuracies of around 5", and stereoscopic acuity
may be as good as 2". Such tasks are said to fall within the range of
hyperacuity.

Incidence angle The angle of incidence 7 is the angle between a ray of
incident light and the normal to the surface.

Isoluminance contour A reflectance map usually consists of contours of
constant luminance, or isoluminance contours, plotted in (p,g) or
gradient space.

Isotropic The same in all directions.

Just noticeable difference (JND) AJND experiment tests discrimination
ability for a parameter over a range by measuring at each point in the
range the amount the parameter has to be changed before the differ-
ence is noticed. The two test stimuli are usually juxtaposed.

Lambertian A Lambertian surface is a perfect diffuser, the reflective
analogue of a blackbody radiator. Its reflectance function $(3e,g) is
cos £ and depends only on 7, the angle of incidence of the illumination.

Laplacian (V?) Formally, V2 = §%ax* + a%dy2 It is the lowest-order
isotropic differential operator.

Lateral geniculate body (LGN) The main visual nucleus between the
eye and the brain. 1t is fed by the optic nerve, which consists of axons
of the retinal ganglion cells. The axons emerging from the LGN, called
the optic radiations, project to the striate cortex in the monkey and in
man.

Low-pass filter A filter that allows through only the low frequencies in
a signal (these could be low spatial or temporal frequencies).

Model axis An axis, associated with a 3-D model, that defines the overall
extent of the shape that the model represents.

Modulation transfer function (MITF) The amplitude of the Fourier
transform of a filter or function. The MTF is useful because by looking
at its graph, one can tell at a glance which frequencies are passed and
which are suppressed by the filter.

Occluding contour A contour in an image that is formed by an occluding
edge.

Panum’s area The disparity range over which stereoscopic fusion can be
achieved without eye movements.

Panum’s limiting case See Figure 3-19.

Pbhase angle The phase angle g is the angle between the incident and
emitted rays.

Place token A token that marks a point of interest in an image. Such
tokens have a position, and they may possess various other properties.
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They are thought to be constructed during the early analysis of the
spatial arrangement of an image.

Primal sketch A representation of the two-dimensional image that makes
explicit the amount and disposition of the intensity changes there. The
representation is hierarchical, the primitives at the lowest level rep-
resenting raw intensity changes and their local geometrical structure,
and those at the higher levels capturing groupings and alignments
occurring among the lower items (see Figure 2-7).

Principal axis The axis of a 3-D model that most component axes adjoin,
for example, the torso axis of a quadruped 3-D model.

Reflectance function Usually denoted by &(7,eg), the reflectance func-
tion associated with a surface specifies what fraction of the incident
light is reflected under different conditions of viewing and illumina-
tion. See Figure 3—75 and Section 3.8.

Reflectance map A graph that relates image intensities to surface orien-
tation, not usually in a one-to-one manner. Figures 3—-76 to 3—-79 show
some examples:

Representation A representation of a set of entities S is a formal scheme
for describing them, together with rules that specify how the scheme
applies to any particular one of the entities.

Retinal ganglion cells The final layer of cells in retinal processing. The
axons of these cells leave the retina through the so-called blind spot
and form the optic nerve.

Retinex Edwin Land’s term for the processing of an image by removing
all gradual changes in intensity, such as might be caused by changes
in illumination, while leaving all sudden changes, such as might be
due to changes in reflectance.

Rhbodopsin  The light-sensitive visual pigment in the rods and cones, the
receptors of the eye.

Saccade A conjunctive eye movement can either be smooth or occur in
a preprogrammed ballistic jump called a saccade, which takes about
160 ms to program internally. Disjunctive eye movements, on the other
hand, are always smooth and are under continuous control based on
feedback about the disparity between the current vergence angle and
the desired vergence angle.

Shape The geometry of an object’s physical surface.

Simple cells A class of orientationally sensitive cells in the striate cortex,
discovered by Hubel and Wiesel and defined as simple cells by the
linearity of their response to stimuli falling in their receptive fields.

Slant The angle by which a plane slants or dips away from the viewer’s
frontal plane. Also called dip.

Spatial frequency The Fourier transform of a signal that varies in time
represents that signal as the sum of sine and cosine waves, each at a
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different temporal frequency. If the signal varies in space rather than
time, like a single image for instance, then the components by which
its Fourier transform represents it are its spatial frequencies, which
can be thought of as oriented sine wave gratings.

Spatial frequency channel A channel that allows only a limited range of
spatial frequencies to pass through it. The early parts of the human
visual system incorporate a number of spatial frequency channels,
each of which is effectively less than two octaves wide; that is, the ratio
of the maximum to the minimum frequency passed is less than 4 to 1.

Striate cortex The primary visual cortical receiving area in the monkey
and in man. So called because of the stria of Genarii, a band of white
matter running through only this region of the cortex.

Surface contour The image of a contour lying on a visible surface.

Synapse The junction between nerve cells occurring between the axon
of one and the dendrite or soma (cell body) of the next. Most synapses
are chemical—that is, messages are transmitted across them by release
of a chemical from the axon terminal—but some synapses are elec-
trical.

Tachistoscope A device used in psychophysical experiments for exposing
the subject to brief visual stimuli.

3-D Model The basic building block of the 3-D model representation. It
specifies a model axis, which defines the overall extent of the shape;
the relative sizes and spatial arrangement of the (few) component axes
of the model; and pointers to the shapes associated with these axes
(see the boxes in Figure 5-3).

3-D Model representation An object-centered representation for shapes
that includes the use of volumetric primitives of various sizes,
arranged in a modular, hierarchical organization (see Figure 5-3).

Tilt The direction in which the surface slants away from the frontal plane.

215-D Sketch A viewer-centered representation of the depth and orien-
tation of the visible surfaces, including contours of discontinuity in
these parameters (see Figure 3-12).

Vergence eye movements See disjunctive eye movements.

Volterra series A way of representing a certain class of nonlinear systems.
Provided a function is sufficiently smooth, that is, has no discontinui-
ties or threshold or decision points, it can be expressed as a series of
polynomial terms; for example,

fixy) =ax + by + exy + dxy + ...
In the particular case of the flight control system of the housefly, only
the lower-order terms are important.

W cells, X cells, Y cells The three classes of retinal ganglion cells. The X-
cell-Y-cell distinction was originally discovered by C. Enroth-Cugell
and J. D. Robson, the W cells being discovered later. These classes
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have been isolated anatomically and physiologically. Y cells have the
largest cell bodies, the largest receptive fields and are the least fre-
quent (about 4% of the total ganglion cells). They have a high con-
duction velocity and relatively transient responses, and are subject to
the shift and Mcllwain effects, insensitive to color, and relatively more
common in the periphery. X cells are smaller than Y cells, have smaller
receptive fields, and occur more frequently than Y cells (about 60%
of retinal ganglion cells are X cells). They have medium conduction
velocity and relatively sustained responses, and are not so subject to
the shift and Mcllwain effects, often color sensitive, and relatively more
common toward the fovea. W cells are very small cells with slow
conduction velocities, forming perhaps 40% of the ganglion cell pop-
ulation. These cells, which are difficult to record from, are often direc-
tionally selective and may have other rather specific properties. Many
of these cells project to the superior colliculus.

Zero-crossing Point where a function’s value changes its sign.
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